PHOTOCHEMISTRY OF AN α, β -UNSATURATED γ, δ -EPOXY NITRILE

Keitaro ISHII and Masanori SAKAMOTO*

Meiji College of Pharmacy,

1-35-23 Nozawa, Setagaya-ku, Tokyo 154

On $^1\pi$, π^* -excitation (λ =254 nm, pentane), α , β -unsaturated γ , δ -epoxy nitrile showed selective product formation via carbonyl ylide and carbene intermediates; (E/Z)-isomerization and C(γ), Occleavage of the oxirane, which are triplet processes, did not occur.

Photochemical reactions of γ , δ -epoxy enones have been studied in great detail. From these studies, it has been known that, on 1 n, π^* -excitation ($\lambda \ge 347$ nm), epoxy enones undergo (E/Z)-isomerization and/or product formation via selective $C(\gamma)$, 0-cleavage of the oxirane. However, $^1\pi$, π^* -excitation ($\lambda = 254$ nm) of epoxy enones gives a complex mixture of photoproducts. Since the n, π^* -state of the carbonyl group lies lower than the π , π^* -state, the products are formed not only via $C(\gamma)$, $C(\delta)$ -cleavage and the carbene intermediate but also via $C(\gamma)$, 0-cleavage and (E/Z)-isomerization. We now report photochemical reactions of 3-(2,6,6-trimethyl-1,2-epoxycyclohexyl)acrylonitrile ($\underline{1}$) which, because of the symmetry of the cyano group, does not have a low lying n, π^* -state. $\underline{2}$

Compound $\underline{1}$ was prepared from dienenitrile $\underline{2}^{3}$ in 81% yield by epoxidation with m-chloroperbenzoic acid. Irradiation of an acetone solution of (E)- $\underline{1}$ with a high pressure mercury lamp through a Pyrex filter ($\lambda \ge 280$ nm; 88% conversion) under argon at room temperature gave the following products: 4) (Z)- $\underline{1}$ (10%), $\underline{3}$ (21%), 5) (E)- $\underline{4}$ (8%), (E)- $\underline{5}$ (21%), and (Z)- $\underline{5}$ (15%). On the other hand, irradiation of a solution of (E)- $\underline{1}$ in pentane with a low pressure mercury lamp ($\lambda = 254$ nm; 86% conversion) under argon at room temperature gave the following products: 4) $\underline{6}$ (6%), 5) $\underline{7A}$ (23%), $\underline{7B}$ (8%), $\underline{7C}$ (5%), 5) $\underline{8}$ (10%), 5) $\underline{9}$ (18%), and $\underline{10}$ (2%).

On triplet sensitization ($\lambda \ge 280$ nm, acetone) of nitrile (E)-1, the similar types of photoproducts are formed as on triplet sensitization of the corresponding α,β -unsaturated γ,δ -epoxy ester, (0) undergoing (E/Z)-isomerization of the side chain ((Z)-1) and C(γ), O-cleavage ((E)-1 and leading to 1, 1 and (E/Z)-1 a

 $C(\gamma)$, 0-bond cleavage of the oxirane $(E)-\underline{1} \rightarrow \underline{a}$ do not occur as observed on π,π^* excitation of $\gamma_i \delta$ -epoxy enones¹⁾ and corresponding ester.⁶⁾ These results suggest clearly that the formations of the carbonyl ylide and carbene intermediates occur from singlet state and (E/Z)-isomerization and cleavage of $C(\gamma)$,0-bond from triplet Characterization of 1 and 3-10 is as follows; (E)- $\underline{1}$: IR (neat) 2220 and $\overline{1630}$ cm⁻¹; $\overline{1}$ H-NMR⁸) 0.91, 1.11, and 1.14 (9H, 3s), 5.53 (1H, d, J=16 Hz), and 6.94 (1H, d, J=16 Hz); ¹³C-NMR 20.4, 25.7 (3q, 2q at 25.7), 16.8, 29.8, 35.6 (3t), 102.8, 150.9 (2d), and 33.5, 66.5, 70.9, 117.2 (4s). (Z)-1: IR (neat) 2220 and 1625 cm $^{-1}$; 1 H-NMR 1.05, 1.10, 1.25 (9H, 3s), 5.53 (1H, d, J=12 Hz), and 6,59 (1H, d, J=12 Hz); 13 C-NMR 21.4, 25.5, 25.8 (3q), 16.8, 29.5, 35.2 (3t), 102.3, 149.6 (2d), and 34.2, 64.9, 70.6, 116.1 (4s). 3: IR (neat) 1645 cm^{-1} ; $^{1}\text{H-NMR}$ 1.11, 1.17, 1.52 (9H, 3s), 5.17 (1H, d, J=2 Hz), and 5.30 (1H, d, J=2 Hz); 13 C-NMR 25.5, 25.8, 30.3 (3q), 20.1, 40.9 (3t, 2t at 40.9), 69.2, 112.1 (2d), and 35.1, 90.4, 118.7, 158.8 (4s). (E)-4: IR (neat) 2225, 1700, and 1625 cm^{-1} ; ¹H-NMR 0.99, 1.02, 2.12 (9H, 3s), 5.30 (1H, d, J=17 Hz), and 7.03 (1H, d, J=17 Hz); 13 C-NMR 24.9, 30.5 (3q, 2q at 24.9), 19.9, 29.7, 39.3 (3t), 100.4, 156.2 (2d), and 47.1, 67.8, 117.1, 207.5 (4s). (E)-5: IR (CHCl_z) 2225, 1705, and 1615 cm⁻¹; 1 H-NMR 0.91, 0.97, 1.21 (9H, 3s), 2.32-2.50 (2H, m), 5.29 (1H, d, J=17 Hz), and 7.16 (1H, d, J=17 Hz). (Z)-5: IR (neat) 2215 and 1705 cm $^{-1}$; 1 H-NMR 1.00, 1.54 (9H, 3s, 2s at 1.00), 2.40-2.60 (2H, m), 5.55 (1H, d, J=12 Hz), and 6.82 (1H, d, J=12 Hz); 13 C-NMR 16.6, 24.1, 24.5 (3q), 22.1, 35.4, 37.0 (3t), 100.3, 154.1 (2d), and 42.0, 59.7, 115.9, 6: IR (neat) 2240 and 1635 cm $^{-1}$; 1 H-NMR 1.04, 1.16, 1.55 (9H, 3s), 3.90 (1H, d, J=2 Hz), and 4.95 (1H, d, J=2 Hz); 13 C-NMR 23.1, 24.5, 24.6 (3q), 23.4, 37.9, 40.0 (3t), 41.5, 101.0 (2d), and 39.5, 94.3, 118.3, 168.8 (4s). $7A^{9}$: IR (neat) 2230, 1715, and 1635 cm⁻¹; ¹H-NMR 0.89, 1.03, 2.15 (9H, 3s), 2.55 (1H, t, J=9 Hz), 2.83-3.13 (1H, m), 5.35 (1H, d, J=16 Hz), and 6.55 (1H, dd, J_1 =16 Hz, $J_2 = 9$ Hz); 13 C-NMR 22.6, 27.4, 29.6 (3q), 26.5, 40.6 (2t), 55.6, 101.6, 154.8 (4d, 2d at 55.6), and 44.4, 117.1, 208.4 (3s). $7B^{10}$: IR (neat) 2225, 1710, and 1630 cm⁻¹; 1 H-NMR 0.93, 1.06, 2.09 (9H, 3s), $\overline{2.17-2.27}$ (1H, m), 2.54 (1H, dd, $J_1=11.2$ Hz, $J_2=8$ Hz), 5.33 (1H, d, J=16.6 Hz), and 6.53 (1H, dd, $J_1=16.6$ Hz, $J_2=11.2$ $\hat{H}z$). $\frac{7C^{11}}{11}$: IR (CHC $\frac{1}{3}$) 3330, 2230, and 1625 cm $^{-1}$; 1 H-NMR 0.97, 1.16, 2.08 (9H, 3s), 2.80-3.25 (2H, m), 5.39 (1H, d, J=11 Hz), and 6.32 (1H, t, J=11 Hz); 13 C-NMR 15.0, 22.9, 28.1 (3q), 28.2, 40.7 (2t), 52.5, 55.1, 101.4, 154.9 (4d), and 45.3, 116.4, 8: IR (CHCl₂) 2240 and 1710 cm⁻¹; ¹H-NMR 0.99, 1.11, 1.17 (9H, 3s), 2.18 (1H, d, J=8 Hz), and 2.58 (1H, d, J=8 Hz); 13 C-NMR 19.2, 22.5, 28.7 (3q), 23.4, 33.7, 40.4 (3t), 20.3, 41.0 (2d), and 28.7, 48.4, 117.4, 203.4 (4s). 9: IR (neat) 2230, 1785, and 1720 cm⁻¹; 1 H-NMR 1.26, 2.14 (9H, 3s, 2s at 1.26), 1.85 (1H, d, J=2 Hz), and 6.42 (1H, d, J=2 Hz); 13 C-NMR 25.4, 29.9 (3q, 2q at 25.4), 18.9, 39.7, 43.6 (3t), 2.3, 92.5 (2d), 34.5, 122.0, 123.3, 208.2 (4s). 10^{10} : IR (neat) 2225, 1960, and 1710 cm⁻¹; ¹H-NMR 1.09, 1.10, 2.13 (9H, 3s), 2.44

1110 Chemistry Letters, 1985

(2H, t, J=7.3 Hz), 5.28 (1H, d, J=6.4 Hz), and 5.66 (1H, d, J=6.4 Hz).

In conclusion, the present investigation shows that the photochemical reactions of γ , δ -epoxy enones and ester are applicable to the corresponding nitrile (E)- $\underline{1}$. Particularly, on $^1\pi$, π^* - excitation of (E)- $\underline{1}$, the isomerization via $C(\gamma)$, 0-cleavage is avoided and the products via the carbonyl ylide \underline{b} and the carbene intermediate c are selectively obtained.

The authors thank Prof. Oskar Jeger and Dr. Bruno Frei at ETH-Zürich for their helpful suggestions.

References

- 1) H. Eichenberger, H. R. Wolf, and O. Jeger, Helv. Chim. Acta, 59, 1253 (1976);
 B. Frei, H. Eichenberger, B. von Wartburg, H. R. Wolf, and O. Jeger, Ibid., 60, 2968 (1977); B. Frei, T. Iizuka, K. Ishii, and O. Jeger, Yuki Gosei Kagaku Kyokai Shi, 43, 55 (1985).
- 2) M. N. R. Ashford, M. T. Macpherson, and J. P. Simons, *Topics in Current Chem.*, 86, 76 (1979).
- 3) V. Ramamurthy, G. Tustin, C. C. Yau, and R. S. H. Liu, *Tetrahedron*, <u>31</u>, 193 (1975).
- 4) Yields are based on converted starting material and were determined by 1 H-NMR analysis of the fractions obtained after chromatography on SiO_2 .
- 5) Only one stereoisomer was detected.
- 6) A. P. Alder, H. R. Wolf, and O. Jeger, Helv. Chim. Acta, 63, 1833 (1980).
- 7) T. Tsuchiya, H. Arai, and H. Igeta, Tetrahedron, 29, 2747 (1973).
- 8) NMR-spectra were measured in ${\rm CDC1}_3$ solution with tetramethylsilane as an internal standard and chemical shifts given in δ -values.
- 9) The configuration of $\frac{7A}{6}$ was proven by methanolysis of $\frac{7A}{1}$ leading to the corresponding methyl ester.
- 10) The mixture $\overline{1B}$ and $\overline{10}$ (8:2) could not be separated. They were identified by means of the IR and $^{1}\text{H-NMR}$ spectra.
- 11) Compound \overline{C} could be isolated as the 2,4-dinitrophenyl hydrazone derivative $\overline{C'}$.

(Received April 11, 1985)