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PHOTOCHEMISTRY OF AN o, B-UNSATURATED vy, 8-EPOXY NITRILE
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On lﬂ,n*-excitation (A=254 nm, pentane), o,B-unsaturated vy,8-
epoxy nitrile showed selective product formation via carbonyl
ylide and carbene intermediates; (E/Z)-isomerization and C(y),0-
cleavage of the oxirane, which are triplet processes, did not

occur.

Photochemical reactions of y,§-epoxy enones have been studied in great de-

tail.l) From these studies, it has been known that, on 1n,n*-excitation (A%2347
nm), epoxy enones undergo (E/Z)-isomerization and/or product formation via selec-
tive C(y),0-cleavage of the oxirane. However, 1ﬂ,ﬂ*—excitation (A=254 nm) of
epoxy enones gives avcomplex mixture of photoproducts. Since the n,n*-state of
the carbonyl group lies lower than the w,n*-state, the products are formed not only

via C(y),C(8)-cleavage and the carbene intermediate but also via C(y),0-cleavage

and (E/Z)-isomerization. We now report photochemical reactions of 3-(2,6,6-tri-
methyl-1,2-epoxycyclohexyl)acrylonitrile (1) which, because of the symmetry of the
L3 5

cyano group, does not have a low lying n,rn*-state.

3) in 81% yield by epoxidation with

Compound 1 was prepared from dienenitrile 2
m-chloroperbenzoic acid. Irradiation of an acetone solution of (E)-1 with a high
pressure mercury lamp through a Pyrex filter (AZ280 nm; 88% conversion) under argon
at room temperature gave the following products:4) (2)-1(10%), §(21%)’5) (E)-4(8%),
(E)-5(21%), and (Z)-5(15%). On the other hand, irradiation of a solution of (E)-1
in pentane with a low pressure mercury lamp (A=254 nm; 86% conversion) under argon
at room temperature gave the following products:4) 2(6%),5) 7A(23%), 7B(8%),
7C(5%),°) 8(10%),°) 9(18%), and 10(2%).

On triplet sensitization (A%Z280 nm, acetone) of nitrile (E)-1, the similar
types of photoproducts are formed as on triplet sensitization of the corresponding

6) undergoing (E/Z)-isomerization of the side chain

a,B-unsaturated vy, §-epoxy ester,
((z)-1) and C(y),0-cleavage ((E)-1 + a) leading to 3, (E)-4, and (E/Z)-5. Mean-
while, on 1Tr,ﬂ*-excitation (A=254 nm, pentane), (E)-1 undergoes C(y),C(d8)-cleavage
of the oxirane leading to carbonyl ylide b and carbene c. The carbonyl ylide b
reacts to enolethers 6 and 11 followed by a 1,3-sigmatropic rearrangement leading
to 8 and 7A-C, respectively?g) The carbene intermediate c, showing typical
behavior of vinyl carbenes,1’7) undergoes addition to the adjacent double bond
furnishing cycolopropene 9 and a 1,2-H-shift to allene 10. On 1n,n*—excitation

of (E)-1, however, (E/Z)-isomerization of the side chain and transformation via
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C(y),0-bond cleavage of the oxirane ((E)-1 = a) do not occur as observed on
excitation of ys§-epoxy enonesl) and corresponding ester.6) These results suggest
clearly that the formations of the carbonyl ylide and carbene intermediates occur
from singlet state and (E/Z)-isomerization and cleavage of C(y),0-bond from triplet
state.

Characterization of 1 and 3-10 is as follows;

(E)-1: IR (neat) 2220 and 1630 cm™b; 1H-NMR®) 0.91, 1.11, and 1.14 (9H, 3s), 5.53
(1H, d, J=16 Hz), and 6.94 (1H, d, J=16 Hz); L C-NMR 20.4, 25.7 (3q, 2q at 25.7),
16.8, 29.8, 35.6 (3t), 102.8, 150.9 (2d), and 33.5, 66.5, 70.9, 117.2 (4s).

(2)-1: IR (neat) 2220 and 1625 cm ; H-NMR 1.05, 1.10, 1.25 (9H, 3s), 5.53 (1H,
d, J=12 Hz), and 6,59 (1H, d, J=12 Hz); 13C-NMR 21.4, 25.5, 25.8 (3q), 16.8, 29.5,
35.2 (3t), 102.3, 149.6 (2d), and 34.2, 64.9, 70.6, 116.1 (4s).

3: IR (neat) 1645 cm™1; 1H-NMR 1.11, 1.17, 1.52 (9H, 3s), 5.17 (lH, d, J=2 Hz),
and 5.30 (1H, d, J=2 Hz); 13C-NMR 25.5, 25.8, 30.3 (3q), 20.1, 40.9 (3t, 2t at
40.9), 69.2, 112.1 (2d), and 35.1, 90.4, 118.7, 158.8 (4s).

(E)-4: IR (neat) 2225, 1700, and 1625 cm™l; 1H-NMR 0.99, 1.02, 2.12 (9H, 3s), 5.30
(1H, d, J=17 Hz), and 7.03 (1H, d, J=17 Hz); L3C-NMR 24.9, 30.5 (3q, 2q at 24.9),
19.9, 29.7, 39.3 (3t), 100.4, 156.2 (2d), and 47.1, 67.8, 117.1, 207.5 (4s).

(E)-5: IR (CHC1;) 2225, 1705, and 1615 em™1; lH-NMR 0.91, 0.97, 1.21 (9H, 3s),
2.32-2.50 (2H, m), 5.29 (1H, d, J=17 Hz), and 7.16 (1H, d, J=17 Hz).

(2)-5: IR (meat) 2215 and 1705 cm !; YH-NMR 1.00, 1.54 (9H, 3s, 2s at 1.00),
2.40-2.60 (2H, m), 5.55 (1H, d, J=12 Hz), and 6.82 (1H, d, J=12 Hz); 13C-NMR 16.6,
24.1, 24.5 (3q), 22.1, 35.4, 37.0 (3t), 100.3, 154.1 (2d), and 42.0, 59.7, 115.9,
210.8 (4s).

6: IR (neat) 2240 and 1635 cm™!; H-NMR 1.04, 1.16, 1.55 (9H, 3s), 3.90 (1H, d,
J=2 Hz), and 4.95 (1H, d, J=2 Hz); 13C-NMR 23.1, 24.5, 24.6 (3q), 23.4, 37.9, 40.0
(3t), 41.5, 101.0 (2d), and 39.5, 94.3, 118.3, 168.8 (4s).

7A9): IR (neat) 2230, 1715, and 1635 cm™*; TH-NMR 0.89, 1.03, 2.15 (9H, 3s), 2.55
(1H, t, J=9 Hz), 2.83-3.13 (1H, m), 5.35 (1H, d, J=16 Hz), and 6.55 (1H, dd, J =16
Hz, J,=9 Hz); 13:_NMR 22.6, 27.4, 29.6 (3q), 26.5, 40.6 (2t), 55.6, 101.6, 154.8
(4d, 2d at 55.6), and 44.4, 117.1, 208.4 (3s).

7810): IR (neat) 2225, 1710, and 1630 cm™!; lH-NMR 0.93, 1.06, 2.09 (9H, 3s),
2.17-2.27 (1H, m), 2.54 (1H, dd, J,=11.2 Hz, J,=8 Hz), 5.33 (1H, d, J=16.6 Hz), and
6.53 (1H, dd, J =16.6 Hz, J,=11.2 Hz).

7c 1) 1R (CHC1,) 3330, 2230, and 1625 em™1; TH-NMR 0.97, 1.16, 2.08 (9H, 3s),
2.80-3.25 (2H, m), 5.39 (1H, d, J=11 Hz), and 6.32 (1H, t, J=11 Hz); 13C-NMR 15.0,
22.9, 28.1 (3q), 28.2, 40.7 (2t), 52.5, 55.1, 101.4, 154.9 (4d), and 45.3, 116.4,
157.7 (3s).

8: TR (CHC1,) 2240 and 1710 em™t; lH-NMR 0.99, 1.11, 1.17 (9H, 3s), 2.18 (1H, d,
J=8 Hz), and 2.58 (1H, d, J=8 Hz); L3C-NMR 19.2, 22.5, 28.7 (3q), 23.4, 33.7, 40.4
(3t), 20.3, 41.0 (2d), and 28.7, 48.4, 117.4, 203.4 (4s).

9: IR (neat) 2230, 1785, and 1720 cm'l; 1H—NMR 1.26, 2.14 (9H, 3s, 2s at 1.26),
1.85 (1H, d, J=2 Hz), and 6.42 (1H, d, J=2 Hz); 13C-NMR 25.4, 29.9 (3q, 2q at
25.4), 18.9, 39.7, 43.6 (3t), 2.3, 92.5 (2d), 34.5, 122.0, 123.3, 208.2 (4s).

1010): IR (neat) 2225, 1960, and 1710 cm™'; 1H-NMR 1.09, 1.10, 2.13 (9H, 3s), 2.44
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(24, t, J=7.3 Hz), 5.28 (1H, d, J=6.4 Hz), and 5.66 (1H, d, J=6.4 Hz).

In conclusion, the present investigation shows that the photochemical reac-
tions of y,8-epoxy enones and ester are applicable to the corresponding nitrile
(E)-1. Particularly, on ln,ﬂ*— excitation of (E)-1, the isomerization via
C(y),0-cleavage is avoided and the products via the carbonyl ylide b and the
carbene intermediate c are selectively obtained.
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